Friday, 10 November 2017

Moving Average Prozess Mittelwert


Gleitender Durchschnitt Mittelwert der Zeitreihendaten (Beobachtungen gleich zeitlich beabstandet) aus mehreren aufeinanderfolgenden Zeitabschnitten. Wird bewegt, weil es kontinuierlich neu berechnet wird, sobald neue Daten verfügbar sind, schreitet es fort, indem es den frühesten Wert fällt und den letzten Wert addiert. Beispielsweise kann der gleitende Durchschnitt der sechsmonatigen Verkäufe berechnet werden, indem man den Durchschnitt der Verkäufe von Januar bis Juni, dann den Durchschnitt der Verkäufe von Februar bis Juli, dann von März bis August und so weiter berechnet. (1) reduzieren die Wirkung von temporären Variationen in den Daten, (2) verbessern die Anpassung von Daten an eine Zeile (ein Prozess namens Glättung), um die Daten Trend deutlicher zu zeigen, und (3) markieren Sie einen beliebigen Wert über oder unter der Trend. Wenn Sie etwas mit sehr hoher Varianz sind das Beste, was Sie möglicherweise tun können, ist herauszufinden, den gleitenden Durchschnitt. Ich wollte wissen, was der gleitende Durchschnitt der Daten war, so hätte ich ein besseres Verständnis davon, wie wir taten. Wenn Sie versuchen, herauszufinden, einige Zahlen, die oft das Beste, was Sie tun können, ist die Berechnung der gleitenden Durchschnitt zu ändern. Exponentieller Gleitender Durchschnitt (EMA) 2.1 Gleitende Durchschnittsmodelle (MA-Modelle) Zeitreihenmodelle, die als ARIMA-Modelle bekannt sind, können autoregressive Begriffe und gleitende Durchschnittsterme enthalten. In Woche 1 erlernten wir einen autoregressiven Term in einem Zeitreihenmodell für die Variable x t ist ein verzögerter Wert von x t. Beispielsweise ist ein autoregressiver Term der Verzögerung 1 x t-1 (multipliziert mit einem Koeffizienten). Diese Lektion definiert gleitende Durchschnittsterme. Ein gleitender Durchschnittsterm in einem Zeitreihenmodell ist ein vergangener Fehler (multipliziert mit einem Koeffizienten). Es sei n (0, sigma2w) überschritten, was bedeutet, daß die wt identisch unabhängig voneinander verteilt sind, jeweils mit einer Normalverteilung mit dem Mittelwert 0 und der gleichen Varianz. Das durch MA (1) bezeichnete gleitende Durchschnittsmodell der 1. Ordnung ist (xt mu wt theta1w) Das durch MA (2) bezeichnete gleitende Durchschnittsmodell der zweiten Ordnung ist (xt mu wt theta1w theta2w) Das gleitende Mittelmodell der q-ten Ordnung , Mit MA (q) bezeichnet, ist (xt mu wt theta1w theta2w dots thetaqw) Hinweis. Viele Lehrbücher und Softwareprogramme definieren das Modell mit negativen Vorzeichen vor den Begriffen. Dies ändert nicht die allgemeinen theoretischen Eigenschaften des Modells, obwohl es die algebraischen Zeichen der geschätzten Koeffizientenwerte und (nicht quadrierten) Ausdrücke in Formeln für ACFs und Abweichungen umwandelt. Sie müssen Ihre Software überprüfen, um zu überprüfen, ob negative oder positive Vorzeichen verwendet worden sind, um das geschätzte Modell korrekt zu schreiben. R verwendet positive Vorzeichen in seinem zugrunde liegenden Modell, wie wir hier tun. Theoretische Eigenschaften einer Zeitreihe mit einem MA (1) Modell Beachten Sie, dass der einzige Wert ungleich Null im theoretischen ACF für Verzögerung 1 ist. Alle anderen Autokorrelationen sind 0. Somit ist ein Proben-ACF mit einer signifikanten Autokorrelation nur bei Verzögerung 1 ein Indikator für ein mögliches MA (1) - Modell. Für interessierte Studierende, Beweise dieser Eigenschaften sind ein Anhang zu diesem Handout. Beispiel 1 Angenommen, dass ein MA (1) - Modell x t 10 w t .7 w t-1 ist. Wobei (wt overset N (0,1)). Somit ist der Koeffizient 1 0,7. Die theoretische ACF wird durch eine Plot dieser ACF folgt folgt. Die graphische Darstellung ist die theoretische ACF für eine MA (1) mit 1 0,7. In der Praxis liefert eine Probe gewöhnlich ein solches klares Muster. Unter Verwendung von R simulierten wir n 100 Abtastwerte unter Verwendung des Modells x t 10 w t .7 w t-1, wobei w t iid N (0,1) war. Für diese Simulation folgt ein Zeitreihen-Diagramm der Probendaten. Wir können nicht viel von dieser Handlung erzählen. Die Proben-ACF für die simulierten Daten folgt. Wir sehen eine Spitze bei Verzögerung 1, gefolgt von im Allgemeinen nicht signifikanten Werten für Verzögerungen nach 1. Es ist zu beachten, dass das Beispiel-ACF nicht mit dem theoretischen Muster des zugrunde liegenden MA (1) übereinstimmt, was bedeutet, dass alle Autokorrelationen für Verzögerungen nach 1 0 sein werden Eine andere Probe hätte eine geringfügig unterschiedliche Probe ACF wie unten gezeigt, hätte aber wahrscheinlich die gleichen breiten Merkmale. Theroretische Eigenschaften einer Zeitreihe mit einem MA (2) - Modell Für das MA (2) - Modell sind die theoretischen Eigenschaften die folgenden: Die einzigen Werte ungleich Null im theoretischen ACF sind für die Lags 1 und 2. Autokorrelationen für höhere Lags sind 0 , So zeigt ein Beispiel-ACF mit signifikanten Autokorrelationen bei Lags 1 und 2, aber nicht signifikante Autokorrelationen für höhere Lags ein mögliches MA (2) - Modell. Iid N (0,1). Die Koeffizienten betragen 1 0,5 und 2 0,3. Da es sich hierbei um ein MA (2) handelt, wird der theoretische ACF nur bei den Verzögerungen 1 und 2 Werte ungleich Null aufweisen. Werte der beiden Nicht-Autokorrelationen sind A-Kurve des theoretischen ACF. Wie fast immer der Fall ist, verhalten sich Musterdaten nicht ganz so perfekt wie die Theorie. Wir simulierten n 150 Beispielwerte für das Modell x t 10 w t .5 w t-1 .3 w t-2. Wobei wt iid N (0,1) ist. Die Zeitreihenfolge der Daten folgt. Wie bei dem Zeitreihenplot für die MA (1) Beispieldaten können Sie nicht viel davon erzählen. Die Proben-ACF für die simulierten Daten folgt. Das Muster ist typisch für Situationen, in denen ein MA (2) - Modell nützlich sein kann. Es gibt zwei statistisch signifikante Spikes bei Lags 1 und 2, gefolgt von nicht signifikanten Werten für andere Lags. Beachten Sie, dass aufgrund des Stichprobenfehlers das Muster ACF nicht genau dem theoretischen Muster entsprach. ACF für allgemeine MA (q) - Modelle Eine Eigenschaft von MA (q) - Modellen besteht im Allgemeinen darin, dass Autokorrelationen ungleich Null für die ersten q-Verzögerungen und Autokorrelationen 0 für alle Verzögerungen gt q existieren. Nicht-Eindeutigkeit der Verbindung zwischen Werten von 1 und (rho1) in MA (1) Modell. Im MA (1) - Modell für einen Wert von 1. Die reziproke 1 1 gibt den gleichen Wert für Als Beispiel, verwenden Sie 0.5 für 1. Und dann 1 (0,5) 2 für 1 verwenden. Youll erhalten (rho1) 0,4 in beiden Fällen. Um eine theoretische Einschränkung als Invertibilität zu befriedigen. Wir beschränken MA (1) - Modelle auf Werte mit einem Absolutwert von weniger als 1. In dem gerade angegebenen Beispiel ist 1 0,5 ein zulässiger Parameterwert, während 1 10,5 2 nicht. Invertibilität von MA-Modellen Ein MA-Modell soll invertierbar sein, wenn es algebraisch äquivalent zu einem konvergierenden unendlichen Ordnungs-AR-Modell ist. Durch Konvergenz meinen wir, dass die AR-Koeffizienten auf 0 sinken, wenn wir in der Zeit zurückgehen. Invertibilität ist eine Einschränkung, die in Zeitreihensoftware programmiert ist, die verwendet wird, um die Koeffizienten von Modellen mit MA-Begriffen abzuschätzen. Sein nicht etwas, das wir in der Datenanalyse überprüfen. Zusätzliche Informationen über die Invertibilitätsbeschränkung für MA (1) - Modelle finden Sie im Anhang. Fortgeschrittene Theorie Anmerkung. Für ein MA (q) - Modell mit einem angegebenen ACF gibt es nur ein invertierbares Modell. Die notwendige Bedingung für die Invertierbarkeit ist, daß die Koeffizienten solche Werte haben, daß die Gleichung 1- 1 y-. - q y q 0 hat Lösungen für y, die außerhalb des Einheitskreises liegen. R-Code für die Beispiele In Beispiel 1 wurde der theoretische ACF des Modells x t 10 w t aufgetragen. 7w t-1. Und dann n 150 Werte aus diesem Modell simuliert und die Abtastzeitreihen und die Abtast-ACF für die simulierten Daten aufgetragen. Die R-Befehle, die verwendet wurden, um den theoretischen ACF aufzuzeichnen, waren: acfma1ARMAacf (mac (0,7), lag. max10) 10 Verzögerungen von ACF für MA (1) mit theta1 0,7 lags0: 10 erzeugt eine Variable namens lags, die im Bereich von 0 bis 10 liegt (H0) fügt dem Diagramm eine horizontale Achse hinzu Der erste Befehl bestimmt den ACF und speichert ihn in einem Objekt Genannt acfma1 (unsere Wahl des Namens). Der Plotbefehl (der dritte Befehl) verläuft gegen die ACF-Werte für die Verzögerungen 1 bis 10. Der ylab-Parameter bezeichnet die y-Achse und der Hauptparameter einen Titel auf dem Plot. Um die Zahlenwerte der ACF zu sehen, benutzen Sie einfach den Befehl acfma1. Die Simulation und Diagramme wurden mit den folgenden Befehlen durchgeführt. (N150, list (mac (0.7))) Simuliert n 150 Werte aus MA (1) xxc10 addiert 10 zum Mittelwert 10. Simulationsvorgaben bedeuten 0. plot (x, typeb, mainSimulated MA (1) data) Acf (x, xlimc (1,10), mainACF für simulierte Probendaten) In Beispiel 2 wurde der theoretische ACF des Modells xt 10 wt. 5 w t-1 .3 w t-2 aufgetragen. Und dann n 150 Werte aus diesem Modell simuliert und die Abtastzeitreihen und die Abtast-ACF für die simulierten Daten aufgetragen. Die verwendeten R-Befehle waren acfma2ARMAacf (mac (0,5,0,3), lag. max10) acfma2 lags0: 10 Plot (lags, acfma2, xlimc (1,10), ylabr, typh, main ACF für MA (2) mit theta1 0,5, (X, x) (x, x) (x, x, x, y) (1) Für interessierte Studierende sind hier Beweise für die theoretischen Eigenschaften des MA (1) - Modells. Abweichung: (Text (xt) Text (mu wt theta1 w) 0 Text (wt) Text (theta1w) sigma2w theta21sigma2w (1theta21) sigma2w) Wenn h 1 der vorhergehende Ausdruck1 w 2. Für irgendeinen h 2 ist der vorhergehende Ausdruck 0. Der Grund dafür ist, dass durch Definition der Unabhängigkeit der wt. E (w k w j) 0 für beliebige k j. Da w w die Mittelwerte 0, E (w j w j) E (w j 2) w 2 haben. Für eine Zeitreihe, Wenden Sie dieses Ergebnis an, um den oben angegebenen ACF zu erhalten. Ein invertierbares MA-Modell ist eines, das als unendliches Ordnungs-AR-Modell geschrieben werden kann, das konvergiert, so daß die AR-Koeffizienten gegen 0 konvergieren, wenn wir unendlich zurück in der Zeit bewegen. Gut zeigen Invertibilität für die MA (1) - Modell. Dann setzen wir die Beziehung (2) für wt-1 in Gleichung (1) (3) ein (zt wt theta1 (z-therma1w) wt theta1z - theta2w) Zum Zeitpunkt t-2. Gleichung (2) wird dann in Gleichung (3) die Gleichung (4) für wt-2 ersetzen (zt wt theta1 z - theta21w wt theta1z - theta21 (z - theta1w) wt theta1z - theta12z theta31w) Unendlich), erhalten wir das unendliche Ordnungsmodell (zt wt theta1 z - theta21z theta31z - theta41z Punkte) Beachten Sie jedoch, dass bei 1 1 die Koeffizienten, die die Verzögerungen von z vervielfachen (unendlich) in der Größe zunehmen, Zeit. Um dies zu verhindern, benötigen wir 1 lt1. Dies ist die Bedingung für ein invertierbares MA (1) - Modell. Unendlich Ordnung MA Modell In Woche 3, gut sehen, dass ein AR (1) Modell in ein unendliches order MA Modell umgewandelt werden kann: (xt - mu wt phi1w phi21w Punkte phik1 w Punkte sum phij1w) Diese Summation der Vergangenheit weißer Rauschbegriffe ist bekannt Als die kausale Darstellung eines AR (1). Mit anderen Worten, x t ist eine spezielle Art von MA mit einer unendlichen Anzahl von Begriffen, die in der Zeit zurückgehen. Dies wird als unendliche Ordnung MA oder MA () bezeichnet. Eine endliche Ordnung MA ist eine unendliche Ordnung AR und jede endliche Ordnung AR ist eine unendliche Ordnung MA. Rückruf in Woche 1, stellten wir fest, dass eine Anforderung für eine stationäre AR (1) ist, dass 1 lt1. Berechnen Sie die Var (x t) mit der kausalen Darstellung. Dieser letzte Schritt verwendet eine Grundtatsache über geometrische Reihen, die (phi1lt1) erforderlich sind, ansonsten divergiert die Reihe. Navigation Ein gleitender Durchschnitt ist ein Glättungsprozess Eine alternative Möglichkeit, die vergangenen Daten zusammenzufassen, besteht darin, den Mittelwert von aufeinanderfolgenden kleineren Mengen von Zahlen von vergangenen Daten wie folgt zu berechnen. Erinnern Sie sich die Menge der Zahlen 9, 8, 9, 12, 9, 12, 11, 7, 13, 9, 11, 10, die der Dollar-Menge von 12 Lieferanten zufällig ausgewählt wurden. Es sei (M), die Größe des kleineren Satzes gleich 3. Dann ist der Durchschnitt der ersten 3 Zahlen: (9 8 9) 3 8.667. Dies wird als Glättung (d. H. Irgendeine Form der Mittelung) bezeichnet. Dieser Glättungsprozeß wird fortgesetzt, indem man eine Periode vorrückt und den nächsten Durchschnitt von drei Zahlen berechnet, wobei die erste Zahl fallengelassen wird. Moving Average Beispiel Die nächste Tabelle fasst den Prozess zusammen, der als Moving Averaging bezeichnet wird. Der allgemeine Ausdruck für den gleitenden Durchschnitt ist Mt frac cdots X. Ergebnisse des Moving Average

No comments:

Post a Comment